
-*415 502 COOPERTIVE KNOWLEDGE 3R5ES CU) SOUTIERTERW "INitE
ELECTRICAL ENGINEERING EDUCRTION INC ST CLOUD FL

DA FEB 83 RRDC-TR-SS-i9 F3S662-S1-C-4193

U 7 MMSI F IE 1 F/0 12/5 ME1 hhhhhhl

mhhhhhhhhhh

JQJ

ll32

111111.25 . 11111.6

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS- 1963-A

-,COERTV KNWEG AE

colk
ROM AIRDEELPMNTCETE

Ai0oce Ir)Cmu
43NfTArFociSm Y 34-70

2 1fc

* COPERAIVE NOWLDGE ASE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE 4 - ,
Form Approved

REPORT DOCUMENTATION PAGE OMB roV 0T04-e

Ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED N/A S
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
N/A Approved for public release;

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE distribution unlimited.

N/A
4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

N/A RADC-TR-88-19

6a. NAME OF PERFORMING ORGANIZATION 16b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Southeastern Center tor (If applicable)
Electrical Engineering Education Rome Air Development Center (COES)

6c. ADDRESS(City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
Central Florida Facility
1101 Massachusetts Avenue Griffiss AFB NY 13441-5700

St. Cloud FL 327669

Sa. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

Rome Air Development Center COES F30602-81-C-0193

Fc ADDRESS(City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT

Griffiss AFB NY 13441-5700 ELEMENT NO. NO. NO ACCESSION NO.
62702F 5581 27 P7

11. TITLE (include Security Classification) ./1
COOPERATIVE KNOWLEDGE BASES

12. PERSONAL AUTHOR(S)
William B. Day
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Da,) 15. PAGE COUNT

Final FROM Jun 87 TO Aug 87 Pebruary 1988 28

16. SUPPLEMENTARY NOTATION

N/A

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP XDistributed Knowledge Basesj

12 05 Concurrent Architectures,

'K Lop-ic Programming . SLU 4-
19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This report is an examination of the complex issues invIived with integrating expert systems

from the viewpoint of logic programming. An overview of expert systems and expert system

building tools (present and future) is presented, together with three Air Force projects for

cooperating expert systems. A summary of a knowledge-Aased execution system leads to a

discussion of how this system can be used to answer many of the integration problems by

reduction to the NP-complete problem of allocation. A preliminary static allocation

algorithm is proposed. ,- ,

20. DISTRIBUTIONIAVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
WUNCLASSFIEDUNLIMITED 0 SAME AS RPT. - DTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c OFFICE SYMBOL
Tnhn .T_ Crnwtar (315) 330-2973 RADC (COES)

DO Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

%N

I. INTRODUCTION
The expert system boom of the past decade has led to a

society of autonomous specialized agents. These systems have
been applied to problems of interpretation, prediction, diagnosis,
design, planning, monitoring, debugging, repair, instruction,
and control [Waterman 86]. As this society matures, it becomes
necessary to integrate both old and new members into cooperative
communities in order to achieve higher levels of abstraction
and more sophisticated goals.

This report is an examination of the complex issues
involved with integrating expert systems.

In Section II an overview of expert systems and expert
system building tools is presented. This includes current work
for expanding the inventory of tools to incorporate cooperative
systems. This section also describes briefly three Air Force 0
projects which are presently integrating expert systems,
viz., the joint Air Force-Navy Project Juniper, the Pilot's
Associate, and Expert Systems on Multiprocessor Architectures.

Section III is a summary from [Chung 87c] of a knowledge-
based system for parallel processing of logic programs. This
system is a prime candidate for a methodology upon which to base
distributed, cooperative expert systems. This section
discusses the statically allocated architecture, the linguistic

enhancements to Prolog which are need for concurrent pro-
gramming, and the computational model for the system.

Section IV is a discussion of how the system of Section III
may be used to confront the problems of integration in a
system of experts. These difficulties include acquiring
knowledge and heuristics, creating new representations and re-
solving possible conflicts. The primary emphasis of this section
is directed toward the allocation problem of the knowledge
base execution system. After the importance of this problem
to all phases of the system and its inherent difficulties are
posed, a preliminary algorithm is then illustrated with S
examples.

Section V concludes this report and considers potential
future work.

Accession For

NTIS GRA&I
DTIC TAB
Unannounced f]
Justification

Distribution/

Avall&bility Codes

D15t Special

1? N

II. EXPERT SYSTEMS: PAST, PRESENT, AND FUTURE

A vast store of expert systems has been created in the
last two decades. Although the field of their applications is
diverse, an individual expert system is focused on a narrow
domain. Construction of new expert systems has been
facilitated with the inception of shells and other custom building
tools; however, the emphasis continues to be on single, independent
systems. Recently, research has begun to address the problems
associated with integrating a collection of expert systems.
This is the next, logical step in the evolution of a large
knowledge base.

in this section we review the fundamentals of the
development of an expert system and expert system building
tools, including next generation tools. This section ends
with summaries of several evolving Air Force projects which
are confronting associated issues of integration and
distribution.

II.1 Expert Systems Fundamentals.

An expert system is a structured body of knowledge, which
is capable of emulating a human expert's power of making
decisions. The knowledge can be conceptually divided into
a knowledge base, an inference engine, and enhancements for the
end-user interface. The knowledge base may consist of the facts
and rules (including heuristics) which are specific to the
addressed problem domain. The inference engine contains general
problem-solving knowledge, typically an interpreter and scheduler.
Enchancements include the special system features, which ease
interaction with a user. (Waterman 86] defines the construction of
an expert system through the sequential tasks of identification,
conceptualization, formalization, implementation, and testing with
feedback loops from the testing task to the first two tasks through
reformalizations, to the third task through redesigns, and to the
fourth task through refinements. Since our concern here is with tools
for building a system, our emphasis is restricted to the tasks of
formalization, implementation, and testing.

The knowledge base is represented either as rules or frames.
Basically, the two representations are equivalent and a choice
between them is determined by the specific domain. Rule-based
representations are constructed from facts and rules, together
(optionally) with associated certainty factors. This
representation is useful in forward and backward chaining
problem-solving. Frame-based representations take the form of
either semantic nets or frames. Domains with reliable taxonomies
are most appropriate for a hierarchical network of nodes connected
by relations, as characterized by semantic nets. The frame data

2

structure works well for domains with stereotypical situations. In _
a frame each node of a hierarchy has a collection of attributes
and associated values, together with attached procedures which
monitor value changes. In both frame-based representations,
inheritance of attributes minimizes storage and provides a
mechanism for inference.

11.2 Expert System Building Tools

Expert system building tools are classified as languages,
system-building aids, and support facilities. Different shells
combine these components with various options. From another view,
expert system building tools contain the three basic units of an
expert system, plus they provide an interface to the developer.
A complete description and evaluation of current expert building
tools in given in [Gevarter 87].

Languages of the tools include general programming languages,
such as C, Lisp, or Prolog, as well as knowledge engineering
languages. The latter are specialized languages embedded within
the system-building aids. The structure of knowledge engineering
languages ranges fLom a skeletal system, which is an existing
expert system devoid of its domain knowledge and is applicable only
to a restricted class of problems, to a general-purpose system,
which can be applied to a variety of different problem areas.
Elaborate shells offer the user a choice or combination of
languages.

System-building aids are programs which help acquire domain
knowledge or guide the design of an expert system. One approach
to design has been to construct the system by assembling basic
building blocks. Systems like TEIRESIAS provide a method for the
system to acquire a human expert's knowledge of domain rules and
checks that the rules are complete and consistent.

Support facilities include many enhancements that simplify the
system's construction. These include debugging aids, such as
tracing the run-time execution or providing break capabilities.
Input/output operations can be elaborated via mouse-selected menus
or provisions for run-time knowledge acquisition. Typical knowledge
base editors support modification, automatically check consistency
and syntax, or solicit modifications from the builder through
prompts. Finally, the ability of the system to explain its reasoning S
to a user is critical to a well-developed tool.

Popular building tools are KEE, ART, KnowledgeCraft, and S.l.
These sophisticated systems provide numerous options on several
different levels to its users. Two new expert building tools . 7
that currently have preliminary versions available for test are
OPUS from IntelliCorp and ABE from Teknowledge. OPUS is defined
by its akithors ([Fikes 871)to be a new generation knowledge engineering
environment; i.e., it is an evolution of IntelliCorp's KEE. In

3

Wo

contrast ABE claims to be a revolutionary tool for intelligent
systems, which combines expert/knowledge systems and conventional
computer systems. We abstract here the important features of
each.

The twin goals of OPUS, as interpreted from the perspective
of integrated expert systems, are (1) to provide a common tool
base for the developement of components of the system and (2) to
integrate these components using new inheritance and default
algorithms under the aegis of truth maintenance.

OPUS tools are geared to declarative, object-oriented
application models that can perform multiple tasks. This has
caused restructuring and clarification of the frame language,
including multi-level descriptions of objects, use of relational
properties of a slot, and continously active deduction rules.
A truth maintenance system is provided to record derivational 0
dependencies and to allow search through a space of alternatives
of the domain environment using KEEworlds. The OPUS
architecture is designed for compatability with current KEE
systems and for support of modular modifications.

ABE's premise ([Erman 86])for improvement in universality;
i.e., a multi-level architecture, which offers a choice of different
(present and future) modules on different levels is aimed at
integrated, large-scale applications featuring re-usable
components.

The key design characteristics of ABE are (1) that its
various levels are each malleable, (2) that it is easy to learn,
(3) that it produces efficent algorithms, which can be iteratively
improved, and (4) that it is portable to a variety of machines,
including distributed and parallel machines.

The current underlying environment of ABE is the Symbolics
LISP machine, Common LISP, and the object-oriented language CORAL.
The virtual machine, consisting of MOP (Module Oriented
Programming system) and KIOSK (the operating system support of
MOP), is created by implementors or systems programmers on a set
of communicating modules. It can be mapped onto various hardware/
operating system ervironments. The virtual machine is used by
system designers to lay a problem-solving framework (i.e., design
choices), such as programming languages, communication protocals
and resource allocations. ABE's library now supports blackboards
and dataflow frameworks. Above this problem-solving framework
is a stratum laid by a tool builder, who supplies new or
existing processing modules such as rule interpretation,
knowledge maintenance, and explanation. Finally, the knowledge
engineer adds structure and control over the modules and their
interactions with each other and separate facilities. Currently
ABE contains these knowledge engineering tools: MRS, KnowledgeCraft, .
S.1. Specific domain-dependent information is then filled into the
resulting skeleton to create an application system. The first

4 V

eee

L ill!''a I

implemented skeletal system was PMR (Plan Monitoring and Replanning)
and is independent of a particular application domain. PMR has been S
used in planning air strike missions and personal travel planning.
Two forms of PMR exist, one using the dataflow framework and one
using the blackboard framework.

11.3 Air Force Examples of Cooperating Expert Systems

A conceptually simple example of distributed expert systems
is the joint Air Force-Navy Project Juniper [Larson 851, which
attempts to coordinate an air strike mission using both Air Force
and Navy aircraft. The expert systems involved are the Air Force's
KRS (Knowledge-based Replanning System) and the Navy's ASPA (Air
Strike Planning Advisor).

A number of issues had to be resolved in this integration.
First, the two systems were not operating on the same level of
expertise. While KRS is a sophisticated, operational planning/
replanning system, ASPS had only one of its modules functional,
weapons loading. Two other non-technical issues were these:
(1) command levels (in the services hierarchies) which were
supported by KRS and ASPA were different and (2) because the Navy
imposes strict (communication) emissions control aboard carriers
when operating in hostile environments, the necessary discourse
between the two systems was limited. Other difficulties encountered
in devising a realistic scenario are described in [Walter 87).

The two problems were finessed by the decision to develop a
Navy version of KRS. In the final version of the scenario, the two 0
versions of KRS interacted directly. ASPA entered the picture only
when the Navy KRS had completed negotiations with its Air Force
partner; i.e., ASPA received its planning directive and data
directly from Navy KRS.

This project was a limited, initial model for communicating
expert systems. The final structure was essentially twin expert
systems. In transforming KRS to Navy KRS, a bijective mapping of
the resources (e.g., carrier instead of airbase) and special values
and constraints of the Navy were easily realized. The combined
system was then effectively communicating with itself through a
dictionary for word replacements.

The Pilot's Associate project, which is one of the primary
applications identified by DARPA's Strategic Computing ([Darpa86]), -
is an ambitious initiative for integrating four expert systems, which
collectively assist pilots with managing information, making
decisions and performing numerous tasks which will optimize ha pilot's
flying and fighting skills. The component systems address system
status mission planning, situation assessment, and tactics
planning. The intent of the integrated system is to present 0
priority information to the pilot, who acts as the sole arbiter.
It is believed that the system's structure promises a high potential

5

. VN~0

% ~.. .

for transfer to future aircraft.
The four individual systems have been successfully tested as

prototypes, and two competitive contracts have been let for the
combined system. At present these duplicate projects are under
construction.

Expert systems on muliprocessor architectures is a
DARPA-funded project ([Darpa 87]) underway at Stanford. This
project addresses many issues which we will examine in Section IV
after a description of the knowledge-based execution system in the
next section. In particular, the goals of the multiprocessor
architecture project include obtaining an increase in speed
of two or three orders of magnitude through concurrency,
developing a methodology for utilizing concurrency on several
levels, deriving a (language) programming setting for
concurrency, and defining an architecture which grounds the
methodology. We feel that the knowledge-based execution system
presents an integrated approach to all these goals, although
there are presently no data to justify the increased speed of
execution.

In addition to the theorectical and methodological
research in their work, the Stanford project is providing
numerous experimental results such as contrasting shared and
distributed memories, load balancing and evaluating the
performance factors of correctness, timeliness, and speedup.
Early results support our reasons for choosing a static over a
dynamic allocation scheme as discussed in Section III; viz.,
using a dynamic approach limits scalability and creates a cache
consistency problem.

The Stanford project examines two different applications: ELINT,
an interpreted system of processed radar signals from aircraft, and
AIRTRAC, a system for both spotting smugglers headed for unpoliced
airstrips and predicting their flight paths. The hardware system
environment is CARE, a simulation of concurrent, communicating
processing sites. Either message-passing or shared variables may
be used with CARE; see (Brown 86] for further details. The
experiments have concentrated on three different frameworks
(languages) for implementing ELINT. They are POLIGON, LAMINA,
and CAGE.

We elaborate on POLIGON because its overall objectives
closely parallel those of our knowledge-based execution
system. For example, POLIGON strives for both declarative
and procedural semantics, a characteristic of all logic
programming. POLIGON's model of parallelism is that an element
in the solution space corresponds to a processor. Other
requirements of programming languages that POLIGON addresses
include these:

1. "the language should provide a tangible
method of expressing ideas of the
programmer"

6

_ ,

2. "the compiler should provide a mapping
between the language and the underlying
systems, be they hardware or software"

3. "the language should abstract the
programmer from its underlying system"

4. "recognize that it is useful to collect
one's knowledge of one subject together
into one chunk"

Further, language requirements and details of POLIGON are given
in [Rice 86).

Other examples of cooperating expert systems are being
discussed throughout the AI community, and it's not hard to
imagine these applications. For example, the original ASPA goal
was to integrate route planning and weapons loading through the
subsystem of expert aircraft selection, fuel calculations, and
weapons selection. Another idea whose top-level view is planning
examines coordinating expert planning on three distinct
levels: strategic, reactive, and real-time. one final scenario
casts numerous robots, each with its unique capabilities and goals,
cooperating for a common goal.

7

% MS

III. A KNOWLEDGE BASE EXECUTION SYSTEM

Very large knowledge-based systems must be able to idpntify
and utilize parallelism, or they will sink under their own
weight. The proper viewpoint of identifying parallelism
is at the top; i.e., given a multiprocessor, how can we
keep as much of the hardware as busy as possible? Since
a multiprocessor consists of memory as well as many
processing units and since the memory may actually represent
over 80% of the actual hardware (at roughly the same cost
as the processor [Hillis 851), it follows that the primary
focus of parallelsim should be on using memory in parallel .
rather than on using processors in parallel.

Given this preamble, we summarize an approach to
parallel memory utilization via logic programming; the
details are presented in [Chung 87c]. These subsections 0
are included: (1) difficulties of parallelism in logic
programs and the AND/OR process model for parallel
execution with dynamic allocation, (2) static versus dynamic
allocation, (3) parallel language constructs, and (4)
a computation model.

III.1 Parallelism and Allocation

Logic programming provides the clause (rule)
a(X,Y) :- b(X), c(Y), d(X,Y).

with both a declarative interpretation:
a(X,Y) is true if b(X), c(Y), and d(X,Y) are true

and a procedural interpretation:
in order to verify a(X,Y), first verify b(X), c(Y), and d(X,Y).

The order of computation of b, c, and d and the related
possibility of AND-parallelism is unspecified, although
Prolog choose a left-to-right order. Similarly, when
several clauses with identical heads, e.g.,

a(X,Y) :- b(X), c(Y), d(X,Y).
a(X,Y) :- e(X), f(Y).
a(X,Y) :- g(X,Y), h(Y).

are present, the search rule (and the related possibility
of OR-parallelism) is unspecified. Prolog uses top-to-bottom
search.

General difficulties in designing a parallel logic S
language are examined here.

1. Semantic difficulties. There are three interpre-
tations for AND. They are (a) pure AND, (b) AND then, and (c)
if then. The OR has two interpretations: (a) pure OR and (b)
OR else. The usual solution to these problems is to
ignore them as language issues and to consider them solely .
as procedural problems which can be solved by introducing
more control.

8

Co,.. .

4

2. Binding conflicts. Conflicts which result in
binding variables during parallel executions are not
always locally detectable or statically analyzable. These
conflicts may be several levels deep within a chain.
The common solutions are either to execute all clauses
and resolve the conflicts or to identify the possible
conflicts prior to execution and do them sequentially.
Both solutions produce high run-time overhead.

3. Backtracking. Whatever scheme is used for back-
tracking, it should be made clear what the "most recent"
literal is, and do this intelligently and efficiently
(the latter two properties are mutually contradictory).

4. Multiple solutions. In OR-exploration, a variable
may be bound to many different terms. In such a case it
will be necessary to keep a binding environment for each
binding or to use only pipeline-parallelism, in which the
first solution is used and reported, and the other solutions
are stored for possible future use.

5. Problem interaction. The previous four difficulties
are not independent. A solution to one problem may solve
another or may introduce additional problems.

Previous dynamic allocation schemes have been variations
on the AND/OR process model of [Conrey 831. Here a program
is solved by a set of message-communicating processors of two
types, AND and OR. They alternate levels as in goal
trees with an AND processor at the root and leaves of OR.
Messages to an immediate descendant are start, redo, or
cancel, and messages to parents are succiss or fail.

Within an AND-node, one first orders the literals and '

obtains a dataflow graph. Then for each literal with no inward-
pointing arc and which has not yet been assigned, create an
OR-node. OR-nodes compute and report one solution at a time,
but store alternative solutions found. Backtracking is
accomplished using the dataflow graph to a generator (the
literal solved first when shared variables are involved).
These constant data dependencies are done dynamically and
consequently incur high run-time expense.

111.2 Static versus Dynamic Allocation '

Measurements of parallelism generally favor a dynamic 0

allocation scheme over a static scheme until one realizes
special features of logic programming. Specifically, (1) a
dynamic allocation scheme spawns more parallel processes.
But this does not matter if the memory is sitting idle.
Furthermore, are the processors really busy, making contribu-
tions to problem-solving or are they spending most of their
time communicating? (2) A dynamic allocation scheme has finer .
granularity. This is fine if one is working solely on a

9
Y11I

L

statement level, but it does not support the modular view. 6
Moreover, finer granularity implies higher system overhead in
communications. (3) A dynamic allocation scheme has less of a
load-balancing problem. Our view is not concerned with keeping
processors occupioed but with keeping memory busy. Even if half
of our one thousand processors are idle, we may be using five
hundred pieces of memory in parallel, each piece executing on its
dedicated processor.

Further, a dynamic allocation scheme must limit itself to
only one copy of the program; otherwise, the storage costs
become excessive. With this limitation, a dynamic allocation
scheme must add the initial overhead of dynamically assigning
tasks and allocating program segments to the overhead of
interprocess communication. A static allocation scheme, on the
other hand, has only the overhead of interprocess communication
and its one-time initial cost of a static allocation.

Finally, a dynamic allocation scheme must allow for
communication between any two processors. In contrast, a static
allocation scheme knows the communication requirements prior
to execution, and they remain fixed throughout the execution.

From the perspective of execution characteristics of logic
programs, a dynamic allocation scheme pales beside its competitor
because of these factors:

1. Logic programs have poor locality with the consequences
of higher overhead for a dynamic allocation scheme and of a
need for partitioning.

2. Administrative information processing forces a dynamic
allocation scheme to produce more cumbersome frame manipulations,
to remember more details if backtracking is required, and
to lose the ideal that any processor can do any task.

3. Binding chains increase communication costs for a dynamic
allocation scheme.

4. Interprocess unifications and backtrackings are explosive
in number in a dynamic allocation scheme.

From the knowledge base perspective of logic programs, the
knowledge base is the number one resource as opposed to
conventional programs, whose main resource is the ALU. Knowledge
base maintenance puts excessive demands on the host of a dynamic
allocation scheme. Only a static allocation scheme can do parallel
knowledge base maintenance. The possiblilty of the knowledge base
learning under a dynamic allocation scheme looks feeble.

The knowledge base execution system itself consists of a . "
collection of message-communicating nodes, all linked to a special
processor, the interface. The interface holds only the alloca-
tion map and any special facilities needed to converse with the
user. In particular, no part of the program resides within the
interface node. Instead the program is allocated initially to _

10 f'.

_0 'a..e %

ryj %
_ %

W04

the other nodes under a static allocation scheme. The static

allocation scheme meets these two requirements:
a. The clauses of a procedural bundle (all clauses with

identical heads) are allocated to the same node,
b. For each clause allocated to a node, all procedural

bundles which are literals in the clause's body are
either allocated to the same node or are allocated
to a connected node.

The communication between a required pair of nodes is composed of
an input buffer (of sufficient size) and a channel. Messages
contain the sender's identification, a message identification,
a command (request, redo, cancel, success, fail) and pertinent
data.

The operation of the system is based of these three queues,
ranked in order: (1) problem-solving, (2) alternative solutions,
(3) knowledge base maintenance. At present only the first queue
has been implemented.

III.3 Parallel Language Constructs

Three attempts at modifying Prolog to accommodate parallelism
have been made. They are known as Concurrent Prolog (see [Shapiro
86]), Parlog (see [Clark 86]), and Guarded Horn Clauses (see
[Ueda 86]). We highlight these languages' modifications and
introduce our changes to Prolog.

In parallel control the requirement necessary for AND- ,

parallelsim is synchronization; i.e., when two or more literals
in the body of a clause share a variable, then one must synchro-
nize their execution least a binding conflict result. Concurrent
Prolog deals with this issue by annotating (as determined by the
programmer) special variables with a "7" . The literals in which
these "read-only" variables occur may not be bound in the process
of solving the literal, but rather they must be bound prior to the
literal's execution or must suspend (or wait) until some other
literal, which is in the body and contains the same, unannotated
variable, is executed and binds that variable. Thus, the synchro-
nization problem is effected through calls in the body of a
clause. Parlog accomplishes its synchronization through the
procedure head. Here a mode declaration is added to the Prolog
program for each clause in the program. A mode declaration
names the predicate and states that each of its arguments is
either IN (must be bound) or OUT (must be unbound). The firing
of a literal suspends if any one of its IN variables is unbound
at the time of execution. Guarded Horn Clauses uses a special
suspension rule to solve the synchronization problem.

OR-parallelism involves two requirements: preference and
commitment. Preference refers to why one clause is chosen over
another in a unification choice. Commitment deletes backtracking.
In committed choice nondeterminism, one disallows backtracking once

11

.. 1

an alternative clause hAs been selected. This is done in

Concurrent Prolog by using the guard, "I", a special symbol added
to Prolog, which divides the body of a clause into two pieces.
The literals to the left of the guard must be executed and found to
be true, before the literals to the right of the guard are
allowed to fire. violations suspend the unification with the
clause's head. Because of possible recursion of a unification
head and its guard, Concurrent Prolog is restricted to Flat
Concurrent Prolog, in which guards are simple tests such as X<O.
Parlog also uses guards and limits itself to testing only values
of variables that have been declared IN by the mode declaration
of the head of the clause. Guarded Horn Clauses uses a second
suspension rule (a guard may not bind any variable in the call)
to achieve the same effect.

Our knowledge-based execution system deals with AND-parallelsim
by extending the mode declarations of Parlog to designate each
variable in the head of each clause as IN, OUT, or IN-OUT. The
new notation, IN-OUT, allows a variable to be IN if it is bound when
the procedure head is invoked or OUT if it is unbound. Mode
declarations are mandatory in our new parallel language.

OR-parallelism in our system is supported through pipe-
lining. A node solves a goal, notifies its requestor of the
solution, and then begins re-solving the goal. Preference for
trying one clause over another with the same head is determined
by using a meta-logical notation similar to the mode declara-
tion. Each predicate is declared as either

in order(predicate name, arity)
or

no order(predicate name, aritv).
A no order choice beEomes dependent on the implementation's
selection scheme, such as Prolog's top-to-bottom. The
ordering allows the node to learn from past experience which
alternative leads to a solution and then to adjust its
ordering. Although this ordering declaration is optional, it is
encouraged since it helps document the programmer's intentions.

Finally, the cut, "I", from Prolog is retained as an extra-
logical control mechanism. Since the cut changes the declarative
semantics of a clause, its use is discouraged.

III.4 A Computational Model S

The initial nodal architecture is that of a conventional
processor which can communicate with another node. Each node
handles unrelated (from the node's perspective) jobs. If a
node does not have the proper clause within its knowledge
base (as determined by its piece of the allocation map), it
places an ORDER to the correct node. This servant node
refers to its requests as JOBs. All messages related to the
same job have the same message identification number. A job is

12

* p . .N

composcl of tasks, each started by an incoming message. A
task terminates when the node solves the goal, fails to solve
the goal, or waits for a servant's response.

Each node is composed of a buffer and a channel for
communicating to each linked node. Each node has its individual
knowledge base (an unduplicated piece of the program), a proof tree
which is composed of frames for the program execution and for the
binding histories of each job, and two tables, the job table and
the order table, both of which contain information to access the
correct frame in a proof tree. Finally, a proving mechanism is
provided to each node to manipulate its resources. The forward
execution and the backtracking of each node are the fundamentals
of the proving mechanism.

After a successful unification in the head of a clause, the
literals are active but not yet executed. Instead, they are
WAITING, one of five states of literals. A literal is READY to 0
fire when all its arguments satisfy the declaration mode. After
a literal is fired, it has status ORDERED, if it sends a request
to another node to solve it, or SOLVING, if the original node can
solve the literal. When the node or its servant solves the literal,
the literal's status become SOLVED.

Each variable in a literal has one of three states: bound,
unbound, or held. When a literal is fired, all the unbound
variables are held for possible bindings and are therefore committed
to this literal. Any other literal in the same clause with the same
variable must wait for this variable to be released. A literal is
ready to fire when all its IN variables are bound, all its OUT
variables are unbound, and no IN-OUT variable is held.

In making a readiness check in the body of a clause from left
to right, a decision must be made in the implementation between
completing the readiness checks for all literals or firing a
literal as soon as it has been determined to be ready. The
former choice leads to breadth first execution and has higher
potential for parallelism, but it may waste time if siblings to
the right of a ready literal all must wait. After a literal is 5
solved the readiness check begins again from the left of the body,
but applies only to those literals to the left of the solved literal
which are waiting.

Forward execution terminates the readiness checking and literal
firings when one of these occurs: (1) the right-most literal is
ready, but not locally solvable, (2) the right-most literal is not 0
ready, (3) the current goal unifies with a unit clause (a fact).

Since a literal may be the third one fired but the first one
solved, the node must remember the solved order, not the firing
order, in order to facilitate backtracking. Solutions to a goal
are not only sent back to the requesting node but are also
inserted in the knowledge base of the servant node as unit
clauses. This is the first level of knowledge base management and
also simplifies backtracking.

13

I I F

S

Shallow backtracking occurs when an attempted unification of
variables fails and simply requires trying another clause. Deep
backtracking occurs when a node fails to find a clause to solve the
current goal and involves a possible combination of three types of
deep backtracking.

Intra-clausal deep backtrackig occurs when a failed literal
finds a solved sibling. The most recently solved sibling becomes
the backtracking point and all other fired literals must be
retracted. For ordered literals this consists of canceling
orders and resetting the literals to waiting. For solving literals
this constitutes undoing bindings and canceling all requests.
This form of backtracking is actually naive backtracking on the
solved literals.

When a literal fails and no sibling has been solved, inter-
clausal deep backtracking occurs. Here one is focusing on the head
of the failed clause. All fired siblings must be retracted. One
then tries another clause with the same head. This backtracking is
always local to the node. Failure in this form requires the
servant node also to purge the proof tree and delete this job
from the job table. S

Finally, inter-process deep backtracking occurs when a literal
in the original job fails. This merely requires reporting the
failure to the requestor. From this point on, one of the other two
forms of deep backtracking will occur.

A more detailed discussion of these mechanisms and an
implementation are contained in [Chung 87c].

14

611 J*

RXIRIN II

IV. COOPERATIVE EXPERT SYSTEMS 6

The management of knowledge bases (in particular, expert
systems) is one application that can be handled through our
execution system. In this section we examine this aspect by
describing how our system can be modified to acquire knowledge
and heuristics, create new representations and resolve possible
conflicts.

Knowledge can enter our system through three portals. The
first opening has already been discussed: each processor, after
successfully solving a goal, retains this solution as a fact in
its knowledge base.

The second entrance is achieved by augmentation. This
includes the addition of a few or many facts and rules by the
system user. For example, a user may employ an unused processor
to accumulate unrelated clauses. Later, during the next re-
allocation of the system (described below), these clauses can
be reassigned to processors which are more appropriate. On a
grander scale, two or more large knowledge bases can also be
combined in this way; i.e., the interface node will hold the
entire allocation map and a re-allocation of the entire system
will yield a unified, cohesive knowledge base.

The third gateway for knowledge acquisition lies within the
processors themselves. Part of each processor is the knowledge
base maintenance queue. This queue includes the potential for
eliminating redundant information (e.g., from two merged 0
knowledge bases) as well as its own mechanisms for instructing
and learning. For example, learning from examples can be built
into the knowledge base maintenance queue wherein the test
examples are presented to the problem-solving queue of the same
processor. This promotes parallel learning for the entire
system. Learning by discovery can also be invoked internally; 0
this type of learning at its most fundamental level takes the
form of re-organization of the knowledge base.

Learning by discovery also points to the creation of new
representations. It is believed that typing and manipulating
data structures will ultimately lead to a more human-like
learning process. Without some formal form of amalgamating
clustered ideas and types, abstraction would be impossible for ,
us humans.

Both acquiring knowledge and creating new respresentations
are dependent on the system's ability to re-organize itself.
These re-organizations and the initial construction of the
network are examples of the allocation problem. We wish to
address this fundamental issue more carefully now.

Static allocation of a knowledge base is an NP-complete
problem. Although this class of problems cannot be solved

15

Pr

0

(deterministically) in polynomial time, a subclass possesses
the property that good approximations can be obtained in
polynomial time. The Traveling Salesman paradigm is a familiar
example for which one can easily construct an excellent
estimate of the optimal path. A mathematical definition and proof
of "good approximation" is generally not possible. Rather one
must be content with a method that works well for reasonably
small test cases which exhibit little pathology.

Consequently, we must limit our search for a static
allocation scheme to approximations, and evaluate a particular
scheme by comparing it with the random allocation scheme.

For the intelligent system described in Section III, we also
envision that over the life-cycle of the system it will be advan-
tageous to re-configure the system many times. A re-configuration S
will never occur in the middle of solving or re-solving a
problem, but only in the knowledge base maintenance cycle. It
could be initiated by a subset of the nodes, including the inter-
face. Such re-allocation schemes will be elaborations of the
initial allocation, augmented with heuristics and statistics
developed since the previous allocation. This re-use increases
the importance of the allocation problem.

Another use for an allocation scheme deals with combining
expert systems or knowledge bases. The joint system may not
necessarily need to create an expert manager. Rather a re-
allocation of the combined knowledge bases can potentially be
used to eliminate redundancies and restructure the system's
network of nodes.

The partitioning of the knowledge base and the corresponding
allocation process observe these two principles: (1) clauses of a
procedural bundle are allocated to the same processor, and (2)
for each clause allocated to a node, all procedural bundles which
occur in the clause body are either allocated to the same node
or to a connected node. Henceforth, under the first principle,
any allocation scheme will be concerned with assigning procedural
bundles.

Assume we have N processors available to the system after
those needed for infrastructure (such as the interface node) and
for special purposes (such as processors dedicated to unifica- L
tion) have been subtracted. Assume there are M procedural bundles
in program P. For a large knowledge base N - O(10**4) and M
O(10**5). The total search space for the optimal configuration is
then O(N**M). This is an impossible task even if each bundle-to-
processor choice is a simple true/false test. Moreover, we have
avoided a definition of "optimal". The optimization-definition
problem is ill-posed because of lack of universally accepted
objective functions and accompanying metrics. Even reducing the
question to a minimization of time is not totally accurate
since this presupposes that each processor has unlimited storage

16

11 1 1 1 1 1

Z1(1-

space. Nevertheless, for a first attempt we make this storage
assumption, and define the optimization as an allocation scheme
which minimizes programs P's time. It is clear that for whatever
initial configuration is chosen, there will generally be some
query presented to the system for which the scheme is not optimal.
This cannot be avoided with static allocation. Rather we emphasize
a scheme which optimizes the "average" query, where we assume
that each piece of the code is equally likely to be invoked. If
simple counters for the bundles were installed, it would be
possible to use this information to weight pieces of code during
the next re-allocation. Thus, for the initial allocation we assume
that we wish to minimize the time for solving an "average" query.

To summarize, the problem of statically allocating the
knowledge base P, which contains M procedural bundles, to N
processors is one of finding a "good" approximation, based on
heuristic metrics, to the minimization of the program's time for
answering an "average" query. Thus, it is definitions for the
words "good" and "average" that are the keys to a scheme.

When a literal is fired, it is either in the SOLVING state
if the local processor can solve it or it is ORDERED if an external S
processor can solve it. In determining whether to allocate a
procedural bundle to a partially filled processor or to an unused
processor, we have to establish a metric for measuring these
communication and solution mechanism costs.

For example, if a bundle B is inserted in a partially filled
processor Q, there will be no inter-processor communication
required of those clauses whoses bodies reference B. However,
it will take longer to access B in Q because B and other bundles
reside there. Furthermore, Q will halt its readiness checking
when it is determined that B is locally solvable. This delays
future (to the right in the body of the currently executing
clause) ORDERED literals, and thereby inhibits potential
parallelism.

On the other hand, placing B in a separate processor Q'
introduces the following communication costs: coding the query
B in Q, transmitting B from Q to Q', decoding B in Q', unifica- g
tions leading to a solution for B in Q', coding the solution of
B in Q', transmitting the solution of B from Q' to Q, and decoding
the solution of B in Q. In addition, there can be delays in each
of the two transmissions, as well as a possible severe delay
within Q' in solving B. Finally, there is the initial cost of A.
setting up a communication channel between Q and Q', including the
creation of the stacks and other data structures needed by the new
node Q'.

We consider now a naive scheme for splitting a knowledge base
into two knowledge bases, KB1 and KB2. The first step is to weigh
all bundles Bi according to these rules:

17

I.V1 10

JR Z \? ~ X

1. For each unit clause in Bi, add +1 to weight Wi
2. For each non-unit clause in Bi, 0

add +1 to Wi for the clause head
add +1 to Wi for each literal in the body if it is in Bi
add 0 to Wi for each built-in literal in the body
add -1 to Wi for each literal in the body if it is not

in Bi.
For example,

a(xl), b(yl), c(zl), d(xl).

a(x2). b(y2). c(z2). d(x2).
a(x3). c(z3).
a(x4).
a(x5).
a(X) :- b(x), x>10.
b(X) :- Y is X-1, b(Y).
c(X) :- a(X).
d(X) :- b(X).

Then

Wa - 5 + (1-1+0) - 5
Wb - 2 + (1+0+1) - 4
Wc - 3 + (1-1) - 3
Wd - 2 +(1-1) - 2.

After sorting the bundles by weight, highest first, the bundles
are distributed between KBI and KB2 through scale-balancing. Thus
bundle a is assigned to KB1, bundle b is assigned to KB2, and
bundle c is also assigned to KB2. The balance now favors KB2
(4+3 > 5) so that bundle d would be assigned to KB1. In general,
the heaviest unassigned bundle is added to the lighter knowledgebase.

One obvious improvement to this scheme is to re-weigh and
re-sort the unassigned bundles after each addition. This affects
Wi only where -1 becomes +1 for each literal in the body of
the clause if the literal has already been assigned to the lighter
knowledge base. In our example, a is again assigned to KBl.
Re-weighing and re-sorting bundles b, c, and d produce no change
in their order. Note that Wc is still 3 since a is in KB1 and
the current lighter knowledge base is KB2. Again bundle b is added
to KB2. Now Wc - 3 but Wd - 2 + (1+1) -4 so that bundle d is
added to KB2. The balance is tipped, and we insert bundle c into
KB1. This revised distribution (bundles a and c in KB1 and bundles
b and d in KB2) looks more natural, given the complete set of
clauses.

Clearly, the change of -1 to +1 for a literal moving from an
external node to the current node is too conservative. The high

18

-p-]

cost of communication may demand a weight assignment of -10 or even
-100 for external literals. A metric must be established for this
cost.

This splitting of a knowledge base into two component knowledge S
bases is the first step in our allocation scheme. The two result-
ing knowledge bases are then split into four (maybe fewer). This
process continues until no resulting knowledge base can be further
split or no processor is available.

For a system which re-allocates its knowledge base many
times, it will be useful to maintain for each procedural bundle an
identification number and a list of pairs. The list for bundle B
will consist of all non-B literals in the bodies of the procedures
of B. Each element in this list will hold a pair of integers: an
identification (of a bundle) number and a frequency count,
which denotes the total number of times this non-B literal occurs
in bundle B. Since the bundles in this list of B are the only
changes that must be made to B's weight, this list provides an
efficient method for re-weighing and re-allocating the collection
of bundles.

Two distinct approaches to resolving conflicts in a system
of cooperative experts are truth maintenance and fuzzy sets.
Truth maintenance consists of identifying basic assumptions and
annotating each derived goal with a label (a set of these S
assumptions). Since a goal may be derived in more than
one way, it will generally contain a set of labels. While this
labeling will eliminate the need for backtracking, the overhead of
tagging all goals will become excessive unless some restrictions
are made and some backtracking is re-introduced. Typically, the
assumptions are split into two disjoint sets. One set holds
assumptions that are always true and are always present. These
are characteristically fixed or constant assumptions in the
domain of discourse; e.g., 2 is even, the sun rises in the east,
or aircraft A100 has a maximum range of 2000 miles. The second set
is more fluid. An assumption in this set may or may not be
believed to be true or false. It is members of this set that
dictate a need for truth maintenance.

Several forms of truth maintenance have been implemented in
different systems; e.g., KEE allows it when constructing a new
expert system. Martin-Marietta has also implemented truth
maintenance in a Prolog environment. At some point we would like
to incorporate truth maintenance into our knowledge-based execution
system, either as part of the problem and re-solving queues or as
part of the knowledge base maintenance. Again, our system
promotes a parallel implementation of this feature.

Fuzzy set theory has been hailed as a possible break-through in
decision-making for expert systems (among other areas); see
[Negoita 85]. In negotiating among conflicting views in a language
which is semantically imprecise, fuzzy set theory provides some S
logic for justifying a choice. Although we have not pursued this
approach, it remains a potential ally.

19

4 K

V. CONCLUSION

This report addresses the problems of cooperating knowledge
bases from the viewpoint of concurrent logic programming. Under
our knowledge-based execution system it is possible to inject
parallelism into a knowledge base from the top level through
minor meta-logical additions to Prolog. Furthermore, independent
knowledge bases can be combined into a cohesive unit by using
the re-allocation capability of this system. Finally, this system
provides a methodology, based on logic, for constructing individual
as well as cooperating, intellegent knowledge bases.

The present state of our system for concurrent evaluation of a
knowledge base of logic clauses using static allocation consists
of an assumed network architecture, linguistic enhancements to Prolog
for parallel execution, a computation model, and an ADA simulator 0

of the system. There are three future tasks that must be solved
in order to transform this model into a viable system; they are
(1) testing the current system, (2) defining an allocation scheme,
and (3) data typing.

The present model has been tested for only a few, selected
examples. The testing work is intended to extend the system's
credibility by recording the response of many, standard logic
programs as well as a large knowledge base. The latter example
is needed to verify the power of parallel execution.

An allocation scheme must be determined for this system. This
scheme and its modifications are required for an initial allocation,
for re-allocations throughout the knowledge base's life-cycle, and
for merging existing knowledge bases. Some preliminary ideas on
this task were presented in Section IV.

Data typing represents an initial investigation into the power
of the individual processor's third queue, the knowledge base
maintenance queue. Without data typing, it is felt that learning
and other forms of maintenance will be defeated by complexity issues.
A starting place here is existing work in POPLOG and LOGLISP. It
is anticipated that this investigation will lead to efficient ways
for the system to learn from examples in parallel.

S
20

I0

O

VI. REFERENCES

(Brown 86]
Brown, H., E. Schoen, and B. Begali, An Experiment
in Knowledge-based Signal Understanding Using Parallel
Architectures, KSL Report No. 86-69, Computer Science
Department, Stanford University, 1986.

[Chung 87a]
Chung, W.-K. and W. Day, The process allocation in parallel
interpretation of logic programs, 1987 ACM Computer
Science Conference, 422, 1987.

[Chung 87b]
Chung, W.-K. and W. Day, A static allocation approach
for parallel execution of logic programs, IEEE Southeastcon
'87, 521-524, 1987.

(Chung 87c]
Chung, W.-K. A Knowledge Based System for Parallel Processing
of Logic Programs, Ph.D. dissertation, Auburn University, 1987.

[Clark 86]
Clark, K. and S. Gregory, Parlog: parallel programming in
logic, ACM Transactions Prog. Sys., Vol. 8, 1-49, 1986.

[Conrey 83)
Conrey, J. The AND/OR Model for Parallel Execution of Logic
Programs, Ph.D. dissertation, University of California, Irvine,
1983.

[Darpa 861
Strategic Computing Second Annual Report, DARPA, Arlington,
Virginia, February, 1986.

(Darpa 87]
DARPA sponsored workshop for Knowledge-based Systems, St. Louis,
Missouri, April, 1987.

(de Kleer 86]
de Kleer, J., An assumption-based TMS, Artificial Intelligence,
Vol. 28, No. 2, 1986.

[Doyle 79)
Doyle, J. A truth maintenance system, Artificial Intelligence,
Vol. 12, 231-272, 1979.

[Erman 86]
Erman, L., J. Lark, and F. Hayes-Roth, Engineering Intelli-
gent Systems: Progress Report on ABE, Teknowledge, Inc., 0
Palo Alto, California, 1986.

[Fikes 87]
Fikes, R., OPUS: A New Generation Knowledge Engineering
Environment, Phase I Final Report, IntelliCorp, Inc.,
Mountain View, California, 1987.

[Gevarter 87]
Gevarter, W. The nature and evaluation of commercial expert
system building tools, IEEE Computer, May, 1987.

21

[Hillis 851
Hillis, W., The Connection Machine, MIT Press, Cambridge,
Massachusetts, 1985.

(Negoita 85]
Negoita, C., Expert Systems and Fuzzy Systems, Benjamin-
Cummings Publishing Co., 1985.

(Rice 861
Rice, J., Poligon, a System for Parallel Problem
Solving, KSL Report No. 86-19, Computer Science Department,
Stanford University, 1986.

(Shapiro 86]
Shapiro, E., Concurrent Prolog: a progress report, IEEE ,
Computer, 44-58, August, 1986.

[Ueda 86]
Ueda, K., Guarded Horn Clauses, in G. Goos and J. Hartmanis -

(Eds.), Logic Programming '85, Springer-Verlag, 168-179, 1986.
(Walter 87]

Walter, S., K. Benner, and C. Anken, Knowledge-based Replanning
Applied to Coordinated-service Mission Planning, RADC Tech.
Report, to be published.

[Waterman 86]
Waterman, D., A Guide to Expert Systems, Addison-Wesley, 1986.

221

U.S. GOVERNMENT PRINTING OFFICE. 1988-511.117164099

ar S.46

72E

R,1J1 Vl

